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Motivating example: UK male log mortality rates

Force of mortality is

µ̂x,t = m̂x,t =
yx,t
ex,t

where yx,t and ex,t represent the number of deaths and corresponding
central exposure for any given age group at year t. Obtain a n× p matrix
to represent age and time dimensions
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Lee-Carter model under Gaussian error

LC model is defined as

ln(mx,t) = αx + βxκt + εx,t

1 αx represents a constant age-specific pattern

2 κt measures the trend in mortality over time

3 βx measures the age-specific deviations of mortality change from the
overall trend

4 εx,t are assumed to be N
(
0, σ2

)
random effects by age and time
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Objectives of methods

Implement an iterative regression method for analysing age-period
mortality rates via generalised Lee-Carter (LC) model

Use Generalised Linear Model (GLM) model (Renshaw and Haberman
2006)

Develop and implement a stratified LC model for the measurement of
the additive effect on the log scale of an explanatory factor (other
than age and time)

Produce forecasts of age-specific mortality rates and life expectancy
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Objectives of ilc package

Extend LC model based on the Gaussian error structure to Poisson

Instead of singular value decomposition, consider a regression model
based on Poisson likelihood maximisation

ilc package contains methods for the analysis of a class of six
log-linear models (capturing age, period, cohort) in the GLM with
Poisson errors
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Features of the ilc package

1 To assess goodness of fit of the regression, estimation routines
support a range of residual diagnostic plots

2 Allows preliminary data corrections, to replace missing data cells, but
also to eliminate potential outliers that might result from data
inaccuracies

3 Includes two simple methods of “closing-out” produces to correct the
original data at very old ages before the application of the model

4 ilc package integrates with the demography and forecast packages

5 ilc package has improved inspection and graphical visualisation of
mortality data and regression output

Objectives of methods and ilc package
Model, estimation and forecasting

Demonstration
Conclusion

6 / 26



Features of the ilc package

1 To assess goodness of fit of the regression, estimation routines
support a range of residual diagnostic plots

2 Allows preliminary data corrections, to replace missing data cells, but
also to eliminate potential outliers that might result from data
inaccuracies

3 Includes two simple methods of “closing-out” produces to correct the
original data at very old ages before the application of the model

4 ilc package integrates with the demography and forecast packages

5 ilc package has improved inspection and graphical visualisation of
mortality data and regression output

Objectives of methods and ilc package
Model, estimation and forecasting

Demonstration
Conclusion

6 / 26



Features of the ilc package

1 To assess goodness of fit of the regression, estimation routines
support a range of residual diagnostic plots

2 Allows preliminary data corrections, to replace missing data cells, but
also to eliminate potential outliers that might result from data
inaccuracies

3 Includes two simple methods of “closing-out” produces to correct the
original data at very old ages before the application of the model

4 ilc package integrates with the demography and forecast packages

5 ilc package has improved inspection and graphical visualisation of
mortality data and regression output

Objectives of methods and ilc package
Model, estimation and forecasting

Demonstration
Conclusion

6 / 26



Features of the ilc package

1 To assess goodness of fit of the regression, estimation routines
support a range of residual diagnostic plots

2 Allows preliminary data corrections, to replace missing data cells, but
also to eliminate potential outliers that might result from data
inaccuracies

3 Includes two simple methods of “closing-out” produces to correct the
original data at very old ages before the application of the model

4 ilc package integrates with the demography and forecast packages

5 ilc package has improved inspection and graphical visualisation of
mortality data and regression output

Objectives of methods and ilc package
Model, estimation and forecasting

Demonstration
Conclusion

6 / 26



Features of the ilc package

1 To assess goodness of fit of the regression, estimation routines
support a range of residual diagnostic plots

2 Allows preliminary data corrections, to replace missing data cells, but
also to eliminate potential outliers that might result from data
inaccuracies

3 Includes two simple methods of “closing-out” produces to correct the
original data at very old ages before the application of the model

4 ilc package integrates with the demography and forecast packages

5 ilc package has improved inspection and graphical visualisation of
mortality data and regression output

Objectives of methods and ilc package
Model, estimation and forecasting

Demonstration
Conclusion

6 / 26



Lee-Carter model under Poisson error

1 LC parameters can be estimated by maximum likelihood methods
based on Poisson error distribution

2 Assuming that age- and period-specific number of deaths are
independent realisations from a Poisson distribution with parameters

E[Yx,t] = ex,tµx,t, Var[Yx,t] = φE[Yx,t]

where φ is a measure of over-dispersion to allow for heterogeneity

3 GLM model of the response variable Yx,t with log-link and non-linear
parameterized predictor:

ηx,t = ln(ŷx,t) = ln(ex,t)︸ ︷︷ ︸
offset

+αx + βxκt
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Estimation algorithm

1 Maximum likelihood point estimates under the GLM approach are
obtained at the minimum value of the total deviation, given by

D (yx,t, ŷx,t) =
∑
x,t

dev(x, t) =
∑
x,t

2ωx,t

{
yx,t ln

yx,t
ŷx,t

− (yx,t − ŷx,t)

}
(1)

where dev(x, t) are the deviance residuals that depend on a set of
prior weights ωx,t

2 Resort to an iterative Newton-Raphson method applied to the
deviance function (1) . We use the iterative procedure:

1 Set starting values β̂x
2 Given β̂x, update α̂x and κ̂t
3 Given κ̂t, update α̂x and β̂x
4 Compute D(yx,t, ŷx,t)
5 Repeat the updating cycle; stop when D(yx,t, ŷx,t) converges
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ŷx,t

− (yx,t − ŷx,t)
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∑
x,t

dev(x, t) =
∑
x,t

2ωx,t

{
yx,t ln

yx,t
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Inclusion of cohort effect

1 Basic LC model can be extended to include an additional bilinear
term, containing a second period effect or a cohort effect

2 Force of mortality by a generalised structure is given as

µx,t = exp
(
αx + β(0)x lt−x + β(1)x κt

)
where αx: main age profile; lt−x: cohort effect; κt: period
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Lee-Carter model with additional covariates

1 Additional factor depends on the size and nature of the mortality
experience, such as geographical, socio-economic or race differences

2 Consider a cross-classified mortality experience observed over age x,
period t and an extra variate g made up of (k × n× l) data cells

3 Stratified LC model is given by

ηx,t,g = ln(ŷx,t,g) = ln(ex,t,g)︸ ︷︷ ︸
offset

+αx + αg + βxκt,

where αg measures the relative differences between the age-specific
log mortality profiles among subgroups defined by the extra variate g
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Forecasting

1 Forecasting mortality in the LC family of models is based on time
series prediction of the calendar time dependent parameters (lt−x, κt)

2 Mortality rate forecasts can be written as

µ̂x,n+h = exp
(
α̂x + β̂(0)x l̂n+h−x + β̂(1)x κ̂n+h

)
where l̂n+h−x and κ̂n+h represent the forecast cohort and period
effects

3 Random walk with drift, ARIMA(0,1,0), is used to forecast period
effect (κt), expressed as

κt = κt−1 + d+ et

where d measures the drift and et represents the white noise

4 In the cohort effects, forecasts revert to the fitted parameters when h
falls within the available data range
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CMI data

1 CMI data contains the mortality experience of male life office
pensioners retiring at or after normal retirement age

2 Data is made up of observed central exposure and deaths for ages
50-108 from 1983 to 2003
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R demo of explanatory plots

1 Plot mortality rates, population-at-risk, death counts for any age
group and year

>insp.dd(dd.cmi.pens,age=50:80,year=1985:1990)

>insp.dd(dd.cmi.pens,what=‘pop’,age=70:100,year=1988:1993)

>insp.dd(dd.cmi.pens,what=‘deaths’,age=seq(100),

year=1980:2010)

2 Produce simple plots (i.e., without legend) of log- or untransformed
rates:

>plot(dd.cmi.pens)

>plot(dd.cmi.pens,transform=FALSE)
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R demo of explanatory plots

1 Produce annotated plots of log or original rates:

>plot_dd(dd.cmi.pens, xlim=c(40, 110),

lpar = list(x.int = -0.2, y.int = 0.9, cex = 0.85))

>plot_dd(dd.cmi.pens, year=1985:1995, transform=FALSE)

>plot_dd(dd.cmi.pens, year=1995:1997, transform=FALSE,

lty=1:3, col=1:3)

2 Deal with missing data

# without correction of empty cells

>tmp.d = extract.deaths(dd.cmi.pens, ages=55:100)

# empty cells are filled using perk model

>tmp.d = extract.deaths(dd.cmi.pens, ages=55:100,

fill=‘perks’)
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Explanatory plots: dealing with missing values
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R demo for estimation of LC model

Estimate the base LC model with Poisson errors

>mod6 = lca.rh(dd.cmi.pens, mod = ‘lc’, interpolate=TRUE)

>coef(mod6); plot(mod6)

>fitted_plot(mod6); residual_plot(mod6)
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Plots of fitted models

>forc6 = forecast(mod6, h = 20, jump = ‘fit’, level = 90,

shift=FALSE)

>plot_dd(forc6, xlim=c(45,100), lpar=list(x.int=-0.2,

y.int=0.9, cex=0.95))

>le6 = life.expectancy(forc6, age=60)

>flc.plot(mod6, at=60, h=30, level=90)
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R demo for estimation of age-period-cohort model

>mod1 = lca.rh(dd.cmi.pens, age=60:95, mod = "m",

restype=‘deviance’, dec.conv=3)

>coef(mod1)

>plot(mod1)
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Age-period-cohort plot
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R demo for stratified LC model

1 For stratified LC model, ilc package introduces a special class of data
object that holds information about the grouping factors and
aggregate data of number of deaths, central exposures and mortality
rates

2 Taking the CMI experience as the base data, produce a randomly
stratified mortality data

>rfp.cmi = dd.rfp(dd.cmi.pens, rfp = c(0.5,1.2,-0.7,2.5))

>matplot(rfp.cmi$age, rfp.cmi$pop[,,1], type=‘l’,

xlab=‘Age’, ylab=‘Ec’, main = ‘Base Level’)

>matplot(rfp.cmi$age, rfp.cmi$pop[,,2], type=‘l’,

xlab=‘Age’, ylab=‘Ec’, main = ‘Base Level’)
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Plots of stratified Lee-Carter
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R demo for estimating and forecasting of stratified LC
model

>rfp.cmi = dd.rfp(dd.cmi.pens, rfp = c(0.5, 1.2, -0.7, 2.5))

>mod6e = elca.rh(rfp.cmi, age=50:100, interpolate=TRUE,

dec.conv=3, verbose=TRUE)

>coef(mod6e)

>mod6ef = forecast.lca(mod6e, h = 20, level = 90, jump=‘fit’,

shift=FALSE)

>plot(mod6ef$kt, ylab=‘kt’, xlab=‘Year’)

>matfle.plot(mod6e$lca, mod6, at=60, label=‘RFP CMI’, h=20)
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Plot of forecast life expectancy

Forecasts from Random walk with drift

Year

kt

1990 2000 2010 2020

−
60

−
40

−
20

0
20

1985 1995 2005 2015 2025
5

10
15

20
25

30
35

Year

le
60

+++++
++++

+++
++

+++
++++

+++
+++

+++
+++

+++
+++

++

d

base

a

b

c

+ d
base
a
b
c

Forecasts of Life Expectancy at age 60

Objectives of methods and ilc package
Model, estimation and forecasting

Demonstration
Conclusion

23 / 26



Conclusion

1 ilc package implements the Lee-Carter model with Gaussian and
Poisson errors

2 ilc package implements additional five models discussed in Renshaw
and Haberman (2006)

3 Stratified Lee-Carter model allows users to include additional
covariates (other than age and time)
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Thank you! · Tak
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