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Still can’t believe we did this.  Truly exciting. 
All In On Open Source 
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Pivotal Big Data Suite

P L A T F O R M 

Data Science Toolkit 
KEY TOOLS KEY LANGUAGES 

SQL
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How Pivotal Data Scientists Select Which Tool to Use 

Prototype in  
R or directly in 

MADlib/PivotalR 

Is the algorithm of 
choice available in 
MADlib/PivotalR? 

Yes 
Build final set of 

models in  
MADlib/PivotalR 

No  
Do opportunities for 

explicit 
parallelization exist?

  

Yes  
Build final set of 
models in PL/R 

No   
Connect to Pivotal 

via ODBC Optimized for both algorithm 
efficiency and code overhead  
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MADlib: Toolkit for Advanced Big 
Data Analytics 

•  Better Parallelism 
–  Algorithms designed to leverage MPP or Hadoop 

architecture 
•  Better Scalability 

–  Algorithms scale as your data set scales 
–  No data movement 

•  Better Predictive Accuracy 
–  Using all data, not a sample, may improve accuracy 

•  Open Source  
–  Available for customization and optimization by user 

 
madlib.net 
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http://doc.madlib.net/latest/ 
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PivotalR: Bringing MADlib and HAWQ to a Familiar R Interface 

�  Challenge 
Want to harness the familiarity of R’s interface and the performance & 
scalability benefits of in-DB/in-Hadoop analytics 

�  Simple solution:  
Translate R code into SQL 

d <- db.data.frame(”houses")!
houses_linregr <- madlib.lm(price ~ tax!

! ! !+ bath!
! ! !+ size!
! ! !, data=d)!

PivotalR 
SELECT madlib.linregr_train( 'houses’,!

'houses_linregr’,!
'price’,!

'ARRAY[1, tax, bath, size]’);!

SQL Code 

 
http://cran.r-project.org/web/packages/PivotalR/index.html 
https://pivotalsoftware.github.io/gp-r/ 
https://github.com/pivotalsoftware/PivotalR 
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PivotalR Design Overview 

2.  SQL to execute 

3.  Computation results 
1.  R à SQL 

RPostgreSQL 

PivotalR 

Data lives here No data here 

Database/Hadoop  
w/ MADlib 

•  Call MADlib’s in-DB machine learning functions 
directly from R 

•  Syntax is analogous to native R function 

•  Data doesn’t need to leave the database 
•  All heavy lifting, including model estimation 

& computation, are done in the database 
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More Piggybacking 
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What is Data Parallelism? 
�  Little or no effort is required to break up the problem into a number of parallel tasks, 

and there exists no dependency (or communication) between those parallel tasks 
�  Also known as ‘explicit parallelism’ 
�  Examples:  

–  Have each person in this room weigh themselves: Measure each person’s weight in parallel 
–  Count a deck of cards by dividing it up between people in this room: Count in parallel  
–  MapReduce 
–  apply() family of functions in R 
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Procedural Language R (PL/R)   

SQL & R  
•  Parallelized model building in 

the R language 
•  Originally developed by Joe 

Conway for PostgreSQL 
•  Parallelized by virtue of 

piggybacking on distributed 
architectures 

 
http://pivotalsoftware.github.io/gp-r/  
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Parallelized Analytics in Pivotal via PL/R:  
An Example 

SQL & R 

�  Parsimonious – R piggy-backs on Pivotal’s parallel architecture 
�  Minimize data movement 
�  Build predictive model for each state in parallel 
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Parallelized R via PL/R: One Example of Its Use 

� With placeholders in SQL, write functions in the native R language 
 

 
 

�  Accessible, powerful modeling framework 
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Parallelized R via PL/R: One Example of Its Use 
�  Execute PL/R function 

 
 

�  Plain and simple table is returned 
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Examples of Usage 
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Pivotal Data Science: Areas of Expertise 
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Pivotal Data Science: Packaged Services 

• Analytics 
Roadmap 

• Prioritized 
Opportunities 

• Architectural  
Recommendati
ons 

• Hands-on 
training 

• Hosted data on  
Pivotal Data 
stack  

• Results review 
& 
assessment 

• On-site MPP 
analytics  
training 

• Analytics tool-
kit 

• Quick insight  
(2 weeks)  

• Prof. services 

• Data science 
model building 

• Ready-to-
deploy 
model(s) 

• Prof. services  

• Data science 
model building 

• Ready-to-
deploy 
model(s) 

LAB 
PRIMER 
(2-Week 
Roadmapping) 

LAB 600 
(6-Week Lab) 

LAB 1200 
(12-Week Lab) 

LAB 100 
(Analytics Bundle) 

DATA JAM 
(Internal DS 
Contest) 



The Internet of Things: 
Smart Meter Analytics  
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Engagement Summary 
� Objective 

–  Build key foundations of a data-driven framework for anomaly 
detection to leverage in revenue protection initiatives 

� Results 
–  With limited access to limited data, our models (FFT and Time 

Series Analysis) identified 191K potentially anomalous meters (7% 
of all meters).  

� High Performance  
–  Pivotal Big Data Suite including MADlib and PL/R 
–  90 seconds to compute FFT for over 3.1 million meters (~3.5 billion 

readings) à 0.0288 ms/meter 
–  ~36 minutes to compute time series models for over 3.1 million 

meters (~3.5 billion readings) à 0.697 ms/meter 
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Step 1: Select Data for Advanced Modeling (3.1 million meters / ~3.5 billion meter readings) 

Step 4: 
 Detect Anomalies  

From  
Combined  
Analysis 
(191K) 

Step 2:  
Detect Anomalies 

From  
Frequency 

Domain Analysis  
(547K) 

Step 3:  
Detect Anomalies  

From 
Time Domain 

Analysis 
(485K) 

All Data (4.5 million meters / ~20 billion meter readings)  

Anomaly Detection Methodology & Results 



-- create type to store frequency, spec, and max freq !

create type fourier_type AS (!

freq text, spec text, freq_with_maxspec float8);!

!

-- create plr function to compute periodogram and return frequency with maximum spectral density !

create or replace function pgram_concise(tsval float8[]) !

  RETURNS float8 AS!

$$!

  rpgram <- spec.pgram(tsval,fast=FALSE,plot=FALSE,detrend=TRUE)!

  freq_with_maxspec <- rpgram$freq[which(rpgram$spec==max(rpgram$spec))]!

  return(freq_with_maxspec)!

$$!

LANGUAGE 'plr’;!

!

-- execute function!

create table pg_gram_results!

as select geo_id, meter_id, pgram_concise(load_ts) FROM!

meter_data distributed by (geo_id,meter_id);!
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Most Households Use Energy in Daily or Half-Daily Cycles 

�  Dominant periodicity (i.e. 
maximum frequency) of 
each meter is computed 

�  ~80% of all households 
show daily or half-daily 
patterns of energy usage 

�  ~20% of all households 
show anomalous patterns 
of energy usage 

�  Flag meters falling into the 
20% as potentially 
anomalous meters  

�  Follow-up Items: Event type 
of the anomalies w.r.t. 
Revenue Protection to be 
determined with additional 
data & models 

1092 546 

Meters with Anomalous Usage Patterns (~20% of all meters) 
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Irregular Patterns of Energy Consumption Displayed by 
Detected Anomalous Meters 
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Parallelize the Generation of 
Visualizations 
 



Parallelize Visualization Generation 



28 © Copyright 2015 Pivotal. All rights reserved. 

Parallelize Visualization Generation 



Demand Modeling &  
What-If Scenario Analysis 
 
Scalable Algorithm Development Using R  
Prototyping Dashboards on RShiny 
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Engagement Overview 

�  Compose rich set of reusable data assets from disparate 
LOBs and make available for ongoing analysis & reporting   

�  Build parallelized demand models for 100+ products & 
locations 

�  Develop scalable Hierarchical/Multilevel Bayesian Modeling 
algorithm (Gibbs Sampling)  

�  Construct framework & prototype app for what-if scenario 
analysis in RShiny 

Customer’s Business Goal 
     Make data-driven decisions about how to  
     allocate resources for planning & inventory    
     management 
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Overview of Hierarchical Linear Model  
Likelihood 

Priors for 
parameters 

Priors for 
hyperparameters 

Posterior   Likelihood x Priors for parameters x Priors for hyperparameters  

This joint posterior distribution does not take the form of a known probability density, 
thus it is a challenge to draw samples from it directly  
à However, the full conditional posterior distributions follow known probability densities 

(Gibbs Sampling) 
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Game Plan 
1.  Figure out which components of the Gibbs Sampler can be 

“embarrassingly” parallelized, i.e. the key building blocks 
–  Mostly matrix algebra calculations & draws from full conditional 

distributions, parallelized by Product-Location 

2.  Build functions (i.e. in PL/R) for each of the building blocks 

3.  Build a “meta-function” that ties together each of the 
functions in (2) to run a Gibbs Sampler 

4.  Run functions for K iterations, monitor convergence, 
summarize results 



Examples of Building Block Functions 
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Meta-Function & Execution 
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PivotalR & RShiny 

SQL to execute 

Computation results 
R à SQL 

RPostgreSQL 

PivotalR 

Data lives here No data here 

Database/Hadoop  
w/ MADlib 

RShiny Server 

•  Data doesn’t need to leave the database 
•  All heavy lifting, including model estimation 

& computation, are done in the database 

RShiny 
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Next Steps 

� Continue to build even more PivotalR wrapper functions 

�  Identify more areas where core R functions can be re-
leveraged and made scalable via PivotalR 

� Explore, learn, and share notes with other packages like 
PivotalR 

� Explore closer integration with Spark, MLlib, H20 

� PL/R wrappers directly from R 
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Thank You 
Have Any Questions? 
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http://blog.pivotal.io/data-science-pivotal 
 

Check out the Pivotal Data Science Blog! 
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Additional References 
� PivotalR 

–  http://cran.r-project.org/web/packages/PivotalR/PivotalR.pdf 
–  https://github.com/pivotalsoftware/PivotalR 
–  Video Demo 

� PL/R & General Pivotal+R Interoperability 
–  http://pivotalsoftware.github.io/gp-r/ 

� MADlib 
–  http://madlib.net/ 
–  http://doc.madlib.net/latest/ 

 



BUILT FOR THE SPEED OF BUSINESS 


