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Motivation

zZinc concentrations (ppm)

<200 £
<300
<500
& <900
@ <1700

[ TR

Map data ©2014 Gooale

The meuse data set gives locations and topsoil heavy metal concentrations,
along with a number of soil and landscape variables at the observation
locations, collected in a flood plain of the river Meuse, near the village of Stein

(NL). Heavy metal concentrations are from composite samples of an area of
approximately 15 m x 15 m.



San Francisco Crime Data

https://data.sfgov.org/Public-Safety/Map-Crime- Incidents-from-1-Jan-2003/gxxq-x39z

SF Open

Map: Crime Incidents - from 1 Jan 2003
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DRIVING UNDER THE INFLUENCE

n 8FPD Incidents - from 1 January 2003
jents are derived from SFPD Crime Incident Reporting system. Upda

Descript @ = DayOfWeek i=
BATTERY Wednesday
GRAND THEFT FROM A BUILDING Sunday
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Temporal Analysis

multiplicative effect
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SF Open Data
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One Environment

Not having to leave R is priceless

DA



Back to 1854




RgoogleMaps

mapSD = GetMap(center=c(32.7073, -117.162), zoom=10,
destfile="SDconv.png’)




PlotOnStaticMap

PlotOnStaticMap(mapSD, lat=myTrails$lon, lon=myTrails$lon,
col=myTrails$col, cex = myTrails$cex)




PlotPolysOnStaticMap

PlotPolysOnStaticMap(map, shp, lwd=.5, col = shp[,'col’]);
shp=importShapefile(shpFile,projection="LL");
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Spatiotemporal Clusters

Scoring unusual events in space and time has been an active and
important field of research for decades: How do we

» distinguish normal fluctuations in a stochastic count process from
real additive events ?

> identify spatiotemporal clusters where the event is most strongly
pronounced ?
» efficiently graph these clusters in a map overlay ?
Supervised learning algorithms are proposed as an alternative to the
computationally expensive scan statistic.

The task can be reduced to detecting over-densities in space relative to a
background density.



NYC cab data
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http://www.nytimes.com/interactive/2010/04/02/nyregion/taxi-map.html

Hot spots

» Relatively compact areas of “high intensity”

» What is baseline ?

% Map tn 22013 Boose Sarbom

Figure: (left) One “hot spot” found where the contextual information provided
by the map is invaluable. (right) Another cluster of crime activity spread along
the street grid.



Unusual Clusters
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> “Over a 5 year period there were 19 cases of a particular type of cancer
reported in a town. A physician notes that there is a 1 year period that
contains eight cases. ”



Unusual Clusters
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> “Over a 5 year period there were 19 cases of a particular type of cancer
reported in a town. A physician notes that there is a 1 year period that
contains eight cases. ”

> “On Aug 17, the U.S. Army suspended all operations of the Black
Hawk helicopter after the third crash in 25 days. The 3 crashes were
about seven times the expected rate based on the previous 5 years.

(S25 = 3)"



Unusual Clusters
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> “Over a 5 year period there were 19 cases of a particular type of cancer
reported in a town. A physician notes that there is a 1 year period that
contains eight cases. ”

> “On Aug 17, the U.S. Army suspended all operations of the Black
Hawk helicopter after the third crash in 25 days. The 3 crashes were
about seven times the expected rate based on the previous 5 years.
(S5 =3)"

> “ Alarming number of inmate deaths in Harris County: In a 10 month
period, 11 inmates died at the troubled Harris County Jail, which is about
twice the expected rate. The U.S. Department of Justice ordered the city
of Houston to pay a fine of $1000 a day until the cause was found.
(S0 = 11)"



Scan Statistic
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This type of spatial surveillance is computationally expensive: O(R - N*)



Pennsylvania Lung Cancer
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Unsupervised as Supervised Learning

Introduced in Hastie et al for density estimation or association rule
generalizations. Problem must be enlarged with a simulated data set generated
by Monte Carlo techniques
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FIGURE 14.3. Density estimation via classification. (Left panel:) Training set
of 200 data points. (Right panel:) Training set plus 200 reference data points,
generated uniformly over the rectangle containing the training data. The training
sample was labeled as class 1, and the reference sample class 0, and a semipara-
metric logistic regression model was fit to the data. Some contours for g(x) are
shown.

In epidemiology cases and population naturally provide two classes, for anomaly
detection the background " population” is taken to be some sort of average.



CART

A cluster found by a classification tree visualized on a Google map tile
numeric labels indicate the fraction of the positive class labels.
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TreeHotspots

R package with new functionalities
» Rotation of Data
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» Visualization of selected leaves



TreeHotspots
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TreeHotspots

R package with new functionalities
Rotation of Data
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» Visualization of selected leaves
» Overlay on maps (Google and OSM)
» User written splitting functions for rpart:



TreeHotspots

R package with new functionalities
Rotation of Data

v

» Visualization of selected leaves
» Overlay on maps (Google and OSM)
>

User written splitting functions for rpart:

> Baseline Distributions eliminate need for point augmentation
> SatScan Poisson and Binomial Likelihood, e.g.
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Simulations

Symmetric Cluster Oblique Cluster




Simulations

Rotated Cluster
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SF crime data, on map
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Figure: positive class is given by (left) drug crimes and (right) robbery related
incidents.
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Outlook

» Power Study
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» Power Study
» R library partykit



Outlook

» Power Study
» R library partykit
» lat lon distortion
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Power Study
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R library partykit

v

lat lon distortion
CRAN or github release
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