- Background
- Bachelor in Mathematics
- Master in Statistics
- PhD in Biostatistics
- Job
- Statistical consultant for Open Analytics NV
The research discussed in this presentation was conducted during my PhD at the KU Leuven.
July 2, 2015
The research discussed in this presentation was conducted during my PhD at the KU Leuven.
A good accurate specific pre-operative diagnosis is crucial for:
Note: can be used irrespective of the adopted algorithm or used risk prediction model.
multiCalibration <- function(outcome, k, p = NULL, LP, r = 1, estimates = FALSE, dfr = 2, parametric = TRUE, generic = TRUE, plotseparate = TRUE, plotoverall = TRUE, datapoints = TRUE, smoothing = TRUE, smoothpar = 1, eci = TRUE, intercept = FALSE, slope = FALSE, test = FALSE, legendOutcome = NULL, pathGraphs = "./"){...}
multiCalibrationGeneric <- function(outcome, k, p, r = 1, dfr = 2, generic = TRUE, plotseparate = TRUE, plotoverall = TRUE, datapoints = TRUE, smoothing = TRUE, smoothpar = 1, eci = TRUE, legendOutcome = NULL, pathGraphs = "./"){...}
multiCalibration(outcomeTest, k = 5, p = pTest, LP = lpTest, r = 1, estimates = FALSE, dfr = 2, parametric = TRUE, generic = TRUE, plotseparate = TRUE, plotoverall = TRUE, datapoints = FALSE, smoothing = TRUE, smoothpar = 1.5, eci = TRUE, intercept = TRUE, slope = TRUE, test = TRUE, legendOutcome = c("benign", "borderline", "stage I invasive", "stage II-IV invasive", "metastatic"), pathGraphs = "./graphs/test_")
Note: the calibration is expected to be 'not perfect' in the considered case study, since the data were split in a specific way which enforced differences in training and validation data.
## $ECI ## [1] 0.3432562 ## ## $calibrationIntercepts ## calInt.1 calIntLL.1 calIntUL.1 calInt.2 calIntLL.2 calIntUL.2 calInt.3 ## -0.60132379 -0.82962752 -0.37302006 -0.54280519 -0.77736772 -0.30824265 -0.49632892 ## calIntLL.3 calIntUL.3 calInt.4 calIntLL.4 calIntUL.4 ## -0.72634453 -0.26631331 -0.18817938 -0.46252389 0.08616514 ## ## $calibrationSlopes ## calSlopeLp.1 calSlopeLpLL.1 calSlopeLpUL.1 calSlopeLp.2 calSlopeLpLL.2 calSlopeLpUL.2 ## 1.0183461 0.7380275 1.2986646 0.9987075 0.7344830 1.2629320 ## calSlopeLp.3 calSlopeLpLL.3 calSlopeLpUL.3 calSlopeLp.4 calSlopeLpLL.4 calSlopeLpUL.4 ## 0.8816050 0.6476059 1.1156042 1.0048464 0.6924594 1.3172334 ## ## $Deviances ## devianceOriginal devianceIntercept devianceSlopes ## 2130.282 2082.359 2070.403 ## ## $PValues ## pOverall pInt pSlopes ## 4.922852e-10 9.795137e-10 1.767830e-02
http://repos.openanalytics.eu/html/multiCalibration.html