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Introduction

Classification of the existing methods (Li and Heap 2008):

60 — AK Akima'’s interpolator
CART regression tree
Cl classification
50 DK disjunctive kriging
GIDS gradient plus IDS
GM global mean
40 7 IDS inverse distance squared
E; IDW inverse distance weighting
% 55 - KED kriging with an external drift
= LM linear regression model
MA moving average
20 NaN natural neighbours
NN nearest neighbours
OCK ordinary CK
10 OK ordinary kriging
RK regression kriging
SETTIA L CTLTTTTTTTITE L J———ree

Spline-3  cubic spline

Cl H
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XEXGXOS0=A ZZXXaOOWX DLZXXONDIX i i
$ES 0959gwﬁggzuo;'(ggngggézg.@&&éb TPS thin plate splines _
5'& 6 T =X © wrxxk S0Hn0n0y TSA trend surface analysis
g s UK universal kriging

The frequency of 32 spatial interpolation methods compared in 80 cases (Li & Heap, 2008 and 2011).

 Non-geostatistical methods (e.g., inverse distance squared: IDS)
*  Geostatistical methods (e.g., ordinary kriging: OK)

«  Combined methods (e.g. regression kriging: RK)

GEOSCIENCE AUSTRALIA %2&’522&"!2‘3’2?&'.5}“2%2?'3 useR! 2015 in Aalborg, Denmark



Introduction
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Introduction

1 Inverse distance weighting (IDW)

2 Generalised least squares trend estimation (GLS)
3 Kriging with an external drift (KED)

4 Ordinary cokriging (OCK)

5 Ordinary kriging (OK)

6 Universal kriging (UK)

7 Boosted regression tree (BRT)

38 General Regression Neural Network (GRNN)
9 RandomForest (RF)

10 Regression tree (RT)

11 Support vector machine (SVM)

12 Thin plate splines (TPS)

13 Linear models and OK (RKIm)

14 Generalised linear models and OK (RKglm)
15 Generalised least squares and OK (RKgls)
16 BRT and OK (BRTOK)

17 BRT and IDS (BRTIDS)

18 GRNN and OK (GRNNOK)

19 GRNN and IDS (GRNNIDS)

20 RF and IDS (RKIDS)

21 RF and OK (RKOK)

22 RT and OK (RTOK)

23 RT and IDS (RTIDS)

24 SVM and OK (SVMOK)

25 SVM and OK (SVMIDS)
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Introduction

1 Inverse distance weighting (IDW) &1

2 Generalised least squares trend estimation (GLS)

3 Kriging with an external drift (KED)

4 Ordinary cokriging (OCK) =

5 Ordinary kriging (OK) - |

6 Universal kriging (UK) ;

7 Boosted regression tree (BRT) E

8 General Regression Neural Network (GRNN) £ o |

9 RandomForest (RF) E'

10 Regression tree (RT) *§

11 Support vector machine (SVM) g

12 Thin plate splines (TPS) 0

13 Linear models and OK (RKIm)

14 Generalised linear models and OK (RKglm)

15 Generalised least squares and OK (RKgls)

16 BRT and OK (BRTOK) 9 =

17 BRT and IDS (BRTIDS) . o s

18 GRNN and OK (GRNNOK)

19 IR e R (ERNIER), Reduction rate in predictive error (RRPE) by the hybrid methods
20 RF and IDS (RKIDS) of Machine Learning Methods and the Existing Spatial Predictive
21 RF and OK (RKOK) Methods (RF/RFOK/RFIDS) in comparison with IDS based on
22 RT and OK (RTOK) previous studies (Li et al. 2010, 2011a, b, ¢, and 2012).

23 RT and IDS (RTIDS)

24 SVM and OK (SVMOK) RRMSE: relative root mean squared error.

25 SVM and OK (SVMIDS)

RRPE = (PE_control - PE_tested)/PE_control*100
PE: predictive error.
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Introduction

Development of the Hybrid Methods of Machine Learning and the Existing
Spatial Predictive Methods

No Method

the combination of random forest (RF) and OK
RFOK

the combination of RF and IDS (RFIDS)

the combination of su?gogt\)/l\e/lc(t)olé)machme (SVM) and

4 the combination of SVM and IDS (SVMIDS)

the combination of boosted regression tree (BRT, a
5 version of gbm) and (BRTOK)

the combination of BRT and IDS (BRTIDS)

the combination of general regression neural network
7 (GRNN) and OK (GRNNOK)

8 the combination of GRNN and IDS (GRNNIDS)

They were reviewed by Li & Heap (2014) and the first two methods were developed in 2008 at
GA and published later (Li et al. 2010, Li 2011, Li et al. 2011a, b & c, Li et al. 2012, Li 2013a, b).
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Introduction

The superior performance of these hybrid methods was partially attributed to the features
of RF, one component of the hybrid methods (Li et al. 2011b & 2011c).

One of the features is that RF selects the most important variable to split the
samples at each node split for each individual trees, thus it is argued to
implicitly perform variable selection (Okun and Priisalu, 2007). So the hybrids
presumably also share this feature.

In this study we aim to address the following questions:

1) are they data-specific for marine environmental data?

2) is ‘model selection’ required for RF and the hybrid method? and

3) are these new hybrid methods equally applicable to terrestrial environmental data?
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Methods

Application to Marine Environment

Region Sand and gravel samples in the Timor Sea, Australia

(n=238)
Modelling methods

Accuracy assessment
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Methods

Application to Marine Environment

Region Model selection: variable importance
Modelling methods
LON of shathy =l
Accuracy assessment slon o slon o
latslon o bathy ©
clon o cbathy o
slatlon ) LON <]
No Method ot . S 5
1 IDW latlon o slat o
bathy o dist °©
OK LAT o cdist.coast 9
RFOK clat ° sdist.coast ©
chathy © slatlon o
sdist.coast o latslon °
relief © slope °
shathy o clat .25
Method Predictive variables including derived variables Ripligt ¥ LAT .
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Mean decrease in accuracy for sand & gravel content

fmBiol © Commonwealth of Australla
@t —J (Geosclence Australia) 2012

GEOSCIENCE AUSTRALIA

useR! 2015 in Aalborg, Denmark



Methods
Application to Marine Environment

Region Performance of methods:
Modelling methods 100 iterations of 10-fold cross-validation

Accuracy assessment
Measures of predictive error (Li & Heap 2008 & 2011):

Relative mean absolute error (RMAE)
Relative root mean square error (RRMSE)

Reduction rate in predictive error (RRPE):
RRPE = (PE_control - PE_tested)/PE_control*100
PE: predictive error.

Software: ud@/

R2.15.1
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Datasets

Data quality
control of sand
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Identification of
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predictors

Acquired data of
predictors

Statistical modelling

Selection of methods
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Results & Discussion

Application to Marine Environment

Effects of input variables
Sand content: 23 models

Modelling.process Predictors No.predictors
1 Model 1: All 21 predictors All 21 variables 21
2 Model 2: - cslope and sslope from model 1 lon, lat, bathy, dist, relief, slope, shathy, cbathy, sdist.coast, cdist.coast, srelief, crelief, slat, clat, slon, clon, latlon, latslon, slatlon 19
3 Maodel 3: - slope from model 2 lon, lat, bathy, dist, relief, sbathy, cbathy, sdist.coast, cdist.coast, srelief, crelief, slat, clat, slon, clon, latlon, latslon, slatlon 18
4 Model 4: - srelief and cbathy from model 3 lon, lat, bathy, dist, relief, sbathy, sdist.coast, cdist.coast, crelief, slat, clat, slon, clon, lation, latslon, slation 16
5 Model 5: - cdist.coast from model 4 lon, lat, bathy, dist, relief, sbathy, sdist.coast, crelief, slat, clat, slon, clon, latlon, latslon, slatlon 15
6 Modle 6: - sbathy from model 5 lon, lat, bathy, dist, relief, sdist.coast, crelief, slat, clat, slon, clon, latlon, latslon, slation 14
7 Model 7: - crelief from model 6 lon, lat, bathy, dist, relief, sdist.coast, slat, clat, slon, clon, latlon, latslon, slatlon 13
8 Model 8: - latlon from model 7 lon, lat, bathy, dist, relief, sdist.coast, slat, clat, slon, clon, latslon, slatlon 12
9 Model 9: - sdist.coast from model 8 lon, lat, bathy, dist, relief, slat, clat, slon, clon, latslon, slatlon !
10 Modle 10: - relief from model 9 lon, lat, bathy, dist, slat, clat, slon, clon, latslon, slatlon 10
11 Model 11: - clat from model 10 lon, lat, bathy, dist, slat, slon, clon, latslon, slatlon 9
12 Model 12: - bathy from model 11 lon, lat, dist, slat, slon, clon, latslon, slatlon 8
13 Model 13: - dist from model 12 lon, lat, slat, slon, clon, latslon, slatlon 7
14 Model 14: - slatlon from model 13 lon, lat, slat, slon, clon, latslon 6
15 Model 15: - clon from model 14 lon, lat, slat, slon, latslon 5
16 Modle 16: - slat from model 15 lon, lat, slon, latslon 4
17 Model 17: - slon from model 16 lon, lat, latslon 3
18 Model 18: - latslon from model 17 lon, lat 2
19 Model 19: - lon from model 18 lat 1
20 Model 20: lon, lat, bathy, dist, relief, slope lon, lat, bathy, dist, relief, slope 6
21 Model 21: lon, lat, bathy, dist, relief lon, lat, bathy, dist, relief 5
22 Model 22: lon, lat, bathy, dist lon, lat, bathy, dist 4
23 Model 23: lon, lat, dist lon, lat, dist 3]
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Results & Discussion

Application to Marine Environment

Effects of input variables

Gravel content: 22 models

Modelling.process Predictors No.predictors
1 Model 1: All 21 predictors All 21 variables 21
2 Model 2: - sslope from model 1 lon, lat, bathy, dist, relief, slope, sbathy, cbathy, sdist.coast, cdist.coast, srelief, crelief, cslope, slat, clat, slon, clon, latlon, latslon, slatlon 20
a Model 3: - cslope from model 2 lon, lat, bathy, dist, relief, slope, sbathy, cbathy, sdist.coast, cdist.coast, srelief, crelief, slat, clat, slon, clon, latlon, latslon, slatlon 19
4 Model 4: - clat from model 3 lon, lat, bathy, dist, relief, slope, sbathy, cbathy, sdist.coast, cdist.coast, srelief, crelief, slat, slon, clon, latlon, latslon, slation 18
5 Model 5: - relief and crelief from model 4 lon, lat, bathy, dist, slope, sbathy, cbathy, sdist.coast, cdist.coast, srelief, slat, slon, clon, latlon, latslon, slatlon 16
6 Modle 6: - latlon and slatlon from model 5 lon, lat, bathy, dist, slope, sbathy, cbathy, sdist.coast, cdist.coast, srelief, slat, slon, clon, latslon 14
7 Model 7: - slope from model 6 lon, lat, bathy, dist, sbathy, cbathy, sdist.coast, cdist.coast, srelief, slat, slon, clon, latslon 13
8 Model 8: - cdist.coast from model 7 lon, lat, bathy, dist, sbathy, cbathy, sdist.coast, srelief, slat, slon, clon, latslon 12
9 Model 9: - latslon from model 8 lon, lat, bathy, dist, sbathy, cbathy, sdist.coast, srelief, slat, slon, clon 11
10 Modle 10: - cbathy from model 9 lon, lat, bathy, dist, sbathy, sdist.coast, srelief, slat, slon, clon 10
11 Model 11: - slat from model 10 lon, lat, bathy, dist, sbathy, sdist.coast, srelief, slon, clon 9
12 Model 12: - lat from model 11 lon, bathy, dist, sbathy, sdist.coast, srelief, slon, clon 8
13 Model 13: - srelief from model 12 lon, bathy, dist, sbathy, sdist.coast, slon, clon 7
14 Model 14: - sbathy from model 13 lon, bathy, dist, sdist.coast, slon, clon 6
15 Model 15: - clon from model 14 lon, bathy, dist, sdist.coast, slon 5
16 Modle 16: - slon from model 15 lon, bathy, dist, sdist.coast 4
17 Model 17: - sdist.coast from model 16 lon, bathy, dist 3
18 Model 18: - bathy from model 17 lon, dist 2
19 Model 19: - lon from model 18 dist 1
20 Model 20: lon, lat, bathy, dist, relief, slope lon, lat, bathy, dist, relief, slope 6
21 Model 21: lon, lat, bathy, dist, slope lon, lat, bathy, dist, slope 5
22 Model 22: lon, lat, bathy, dist lon, lat, bathy, dist 4
e
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Results & Discussion

Application to Marine Environment

Effects of input variables

Sand content: 23 models Gravel content: 22 models
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Results & Discussion
Application to Marine Environment

Effects of Methods

Sand content Gravel content
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Results & Discussion

Application to Marine Environment
Spatial predictions of IDW and RFOK

Spatial distrbution of gravel content (%)

N

Spatial distrbution of sand content (%) . Spatial distrbution of gravel content (%)
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Results & Discussion

Application to the terrestrial environment

Fire Weather Danger

One of the most commonly used Fire Weather Danger indicator in Australia is

the McArthur Forest Fire Danger Index (FFDI).

Category Forest Fire Danger Index
Severe a0-74
Very high 25 - 49
High 12-24 CATASTROPHIC |
Low to moderate 0-11 '

Fire Danger Rating
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Results & Discussion

Application to the terrestrial environment

Quantifying natural hazards

Average Recurrence Interval (Return period).

If a given value (return level) of some natural phenomenon such as wind

speed, temperature or precipitation is exceeded with probability ‘p’ on average once a
year, the Return Period (RP) corresponding to this value is 1/p years.

Example. The average annual probability of exceeding a gust wind speed of 45 m/s
at Sydney Airport is 0.002, we can say that the 500-year RP (1/0.002) of gust wind

speed at this location is 45 m/s, i.e. it is expected that the value 45 m/s is
exceeded at Sydney Airport, on average, once every 500 years.
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Results & Discussion

Application to the terrestrial environment

Samples of FFDI (n=78)

a.

! - FFDI
_—_ ' 250

125

t o
[~ e Station location TAS@ 4077
] ]
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Application to the terrestrial environment

Variable Name
Annual mean temperature T_mean
Summer mean temperature T_mean_djf
Autumn mean temperature T_mean_mam
Winter mean temperature T_mean_jja
Spring mean temperature T_mean_son
Annual maximum temperature T_max
Summer maximum temperature T_max_djf
Autumn maximum temperature T_max_mam
Winter maximum temperature T_max_jja
Spring maximum temperature T_max_son
Annual minimum temperature T_min
Summer minimum temperature T_min_djf
Autumn minimum temperature T_min_mam
Winter minimum temperature T_min_jja
Spring minimum temperature T_min_son
Annual mean precipitation Rain_mean
Summer mean precipitation Rain_djf
Autumn mean precipitation Rain_mam
Winter mean precipitation Rain_jja
Annual mean relative humidity RH_mean
Summer mean relative humidity RH_djf
Autumn mean relative humidity RH_mam
Winter mean relative humidity RH_jja
Spring mean relative humidity RH_son
Annual mean pan evaporation Evp_mean
Summer mean pan evaporation Evp_dif
Autumn mean pan evaporation Evp_mam
Winter mean pan evaporation Evp_jja
Spring mean pan evaporation Evp_son
Mean enhanced vegetation index EVI_mean
Maximum enhanced vegetation index EVI_max
Minimum enhanced vegetation index EVI_min
Annual mean wind speed Wind
Elevation (above sea level) Elevation
Latitude/Longitude Lat/Lon

Results & Discussion

3 © Commonwealth of Australia
=] (Geosclence Australia) 2012
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Results & Discussion

Application to the terrestrial environment
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Results & Discussion

Application to the terrestrial environment

FFDI
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Results & Discussion

Application to the terrestrial environment

FFDI
250

125

e Station location
1

e Station location
| |

RF-IDW RF-OK

Spatial predictions of the 50-yr RP of FFDI
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Application to the terrestrial environment
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Results & Discussion

RRPE (%) for spatial predictions of seabed sediment in the previous studies
(Li et al. 2010, 20114, b, ¢ & 2012) and current and of FFDI
(Sanabria et al. 2013)

25

20

Reduction rate in RRMSE (%)
10 15
|

o -

Gravel Sand Gravel_TS Sand_TS FFDI
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Summary

1) These hybrid methods seem not data specific, but their models are. Therefore, best
model should be developed according to individual situation.

2) Model selection is required for RF and the hybrid method in order to find an optimal
predictive model.

3) The most accurate predictions were obtained using RFOK and RFIDW, with a
RRPE of 10% for seabed sediment and 28% for FFDI when compared to IDW.

4) These methods have been applied to about 20 datasets in marine and terrestrial
environments with promising results. They are recommended not only for
environmental sciences but also for other disciplines.

5) The development of the hybrid methods has opened an alternative source of
methods for spatial prediction.

6) More machine learning methods are expected to be introduced to and new hybrid
methods are expected to be developed for and applied to spatial predictive
modelling in the future.
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