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Multicollinearity

» Goal of epidemilogical studies is to investigate the joint effect of
different covariates / risk factors on a phenotype...

» ... but highly correlated risk factors create collinearity problems!
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Multicollinearity

» Goal of epidemilogical studies is to investigate the joint effect of
different covariates / risk factors on a phenotype...

» ... but highly correlated risk factors create collinearity problems!
Example

Researchers are interested in determining if a relationship exists
between blood pressure (y = BP, in mm Hg) and

» weight (x; = Weight, in kg)

» body surface area (x> = BSA, in sqm)

» duration of hypertension (x5 = Dur, in years)
» basal pulse (x4 = Pulse, in beats per minute)
» stress index (x5 = Stress)
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» Highly correlated risk factors create collinearity problems, causing
instability in model estimation

Model | 51 | SEB | B> | SE 5 |
Y ~ X 264 | 0.30 - -
Yy~ Xo - - 3.34 1.33
y~X +X | 6.58]| 0.53]-2044| 2.28
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» Highly correlated risk factors create collinearity problems, causing
instability in model estimation

Model | 51 | SEB | B> | SE 5 |
Y ~ X 264 | 0.30 - -
Yy~ Xo - - 3.34 1.33
y~X +X | 6.58]| 0.53]-2044| 2.28

» Effect 1: the estimated regression coefficient of any one variable
depends on which other predictor variables are included in the
model.

» Effect 2: the precision of the estimated regression coefficients
decreases as more predictor variables are added to the model.
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Profile Regression

Issues caused by
» correlated risk factors
» interacting risk factors
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Profile Regression

Issues caused by
» correlated risk factors
» interacting risk factors

Profile regression

» partitions the multi-dimensional risk surface into groups
having similar risks

» investigation of the joint effects of multiple risk factors
» jointly models the covariate patterns and health outcomes
» flexible but tractable Bayesian model
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Profile Regression

Notation

For individual i

Yi
X,':(XH,...
Wi

Zi=20C

. Xip)
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outcome of interest

covariate profile

fixed effects

the allocation variable indicates the
cluster to which individual / belongs

Profile Regression 8/18



Profile Regression

Statistical Framework

» Joint covariate and response model

f(Xi, Vil 6, 0,0, 8) = > wef(Xi|zi = ¢, 66)f(¥i|zi = ¢, bc, B, W)
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Profile Regression

Statistical Framework

» Joint covariate and response model

f(xh y/‘¢7 97 '(/)a ﬁ) = Z wa(x/‘Zi =C, ¢C)f(yf|zi =C, 907 6? Wi)
C
» For example for discrete covariates

J
f(xilzi = ¢, ¢c) = H Dz,.jx;;
j=1

» For example, for Bernoulli response

logit{p(y; = 1(6¢, 3, W;)} = 6 + BTw;
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Profile Regression

Statistical Framework

» Joint covariate and response model

f(xiayi‘qbaevq/}aﬁ) = chf(xi‘zi = Ca¢0)f(yf|zi - Caecaﬁawi)

» Prior model for the mixture weights ¢
» stick-breaking priors (constructive definition of the Dirichlet

Process)
P(Z = clyp) = e Py = Vi

e = Ve H(1 -V V; ~ Beta(1, @)

I<c

» larger concentration parameter o the more evenly distributed is the
resulting distribution.

» smaller concentration parameter « the more sparsely distributed is
the resulting distribution, with all but a few parameters having a
probability near zero
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Implementation: R package PReMiuM

We have implemented profile regression in C++ within the R package
PReMiuM.

>

Binary, binomial, categorical, Normal, Poisson and survival
outcome

Allows for spatial correlation
Fixed effects (global parameters) including also spatial CAR term
Normal and/or discrete covariates

Dependent or independent slice sampling (Kalli et al., 2011) or
truncated Dirichlet process model (Ishwaran and James, 2001)

Fixed alpha or update alpha, or use the Pitman-Yor process prior
Handles missing data
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Implementation: R package PReMiuM

We have implemented profile regression in C++ within the R package
PReMiuM.

» Allows users to run predictive scenarios
» Performs post processing
» Contains plotting functions

Currently working on:
» Quantile profile regression
» Enriched Dirichlet processes
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Applications and features of the model

Example: Simulated data

The profiles are given by
y : outcome, Bernoulli
x : 5 covariates, all discrete with 3 levels
w : 2 fixed effects, continuous or discrete
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Survival response with censoring: sleep study
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Variable selection
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Applications and features of the model

Spatial correlated response: deprivation in London

(7.8831.1]
(2.47,7.88]
(-2.04,2.47)
(-7.73,-2.04]
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Applications and features of the model
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