
archivist: Tools for Storing, Restoring
and Searching for R Objects

Przemyslaw.Biecek@gmail.com
M.P.Kosinski@gmail.com

University of Warsaw
Faculty of Mathematics, Informatics, and Mechanics

mailto:M.P.Kosinski@gmail.com
mailto:Przemyslaw.Biecek@gmail.com
javascript:w3c_slidy.toggle_table_of_contents()

Motivation: StatLink (at) OECD

Reproducible research
With great tools, like knitr or Sweave, one can prepare excellent and reproducible report/article.

However:

sometimes raw data are large or with limited access,

computations take a lot of time or require specialized hardware,

require specific versions of packages,

…

Instead of reproducing all results we may ask for only for scripts that retrieve required results.

How this may be useful?
Let’s see some examples.

Use Case 1:

We found an interesting plot/table in an article.

Is there a way to retrieve corresponding data?

Hooks to R objects
With archivist, for any data.frame, R plot, R object, one can generate a simple one line instruction that
retrieves R object. Include it in figure/table caption, blog post, stackoverflow…

the full object name is 32 characters long, but first few is enough
archivist::aread("pbiecek/graphGallery/2166dfbd3a7a68a91a2f8e6df1a44111")
archivist::aread("pbiecek/graphGallery/2166d")

Hooks to R objects
With archivist, you can print calling cards for R objects and keep best objects in your wallet.

Use Case 2:

Saving objects should be as easy as possible.

Storing objects should be as easy as possible
Let’s create a plot.

library("ggplot2")
pl <- ggplot(iris, aes(y=Petal.Length, x=Sepal.Length, color=Species)) +
 geom_point() + theme_bw()

With archivist, saving an object is just a single call of saveToRepo().

library("archivist")
repo <- "archivist_test"
createEmptyRepo(repo)
saveToRepo(pl, repo)

[1] "fcbbeae563766ce7fb042a57f4d44f28"
attr(,"data")
[1] "ff575c261c949d073b2895b05d1097c3"

Storing objects should be as easy as possible
Let’s create a plot.

library("ggplot2")
pl <- ggplot(iris, aes(y=Petal.Length, x=Sepal.Length, color=Species)) +
 geom_point() + theme_bw()

With archivist, saving an object is just a single call of saveToRepo().

library("archivist")
repo <- "archivist_test"
createEmptyRepo(repo)
saveToRepo(pl, repo)

showLocalRepo(repo, "tags")

 artifact tag createdDate
1 fcbbeae563766ce7fb042a57f4d44f28 labelx:Sepal.Length 2015-07-01 08:42:28
2 fcbbeae563766ce7fb042a57f4d44f28 labely:Petal.Length 2015-07-01 08:42:28
3 fcbbeae563766ce7fb042a57f4d44f28 class:gg 2015-07-01 08:42:28
4 fcbbeae563766ce7fb042a57f4d44f28 class:ggplot 2015-07-01 08:42:28
5 fcbbeae563766ce7fb042a57f4d44f28 name:pl 2015-07-01 08:42:28
6 fcbbeae563766ce7fb042a57f4d44f28 date:2015-07-01 08:42:28 2015-07-01 08:42:28
7 ff575c261c949d073b2895b05d1097c3 relationWith:fcbbeae563766ce7fb042a57f4d44f28 2015-07-01 08:42:28

How the repository looks like?
Each repository has following structure:

SQLite database stored in the file backpack.db

directory named gallery, with objects and miniatures (rda, png and txt files).

Tags and artifact’s meta data are stored in two tables.

Use Case 3:

Few weeks ago we have created an R object
and now we would like to find it.

How we can find it?

Searching in the repository
With archivist, you can search for artefacts by pointing their properties, like class, object’s attributes,
variable names and others.

Let’s find all objects of the class gg

plots <- asearch("pbiecek/graphGallery",
 patterns = "class:gg")
length(plots)

[1] 4

Searching in the repository
With archivist, you can search for artefacts by pointing their properties, like class, object’s attributes,
variable names and others.

Let’s find all objects of the class gg

plots <- asearch("pbiecek/graphGallery",
 patterns = "class:gg")
length(plots)

After retrieving all plots that fit given pattern, you can plot them all.

library(gridExtra)
do.call(grid.arrange, plots)

Retrieved objects might be updated
Objects may be also updated or additionally tagged. Here we add titles with plot’s MD5 hashes for each
plot.

plots2 <- lapply(plots,
 function(x)
 x + ggtitle(paste("MD5:",substr(digest::digest(x), 1, 8))))
do.call(grid.arrange, plots2)

Use Case 4:

Explore the repository in an interactive fashion

Interactive browser for R objects
With archivist, you can interactively explore artefacts in the repository with the shiny app created on-
the-fly.

repo <- "/Users/pbiecek/GitHub/graphGallery/"
shinySearchInLocalRepo(repo)

Use Case 5:

We have an R object.

Is there a way to check how the object was created?

Object’s pedigree
We have extended the %>% operator from magrittr. The new operator saves all calls and results with
additional meta information that allow to recreate a path from which the object was created.

If this operator is used, then for any resulting object we can restore it’s pedigree.

library("dplyr")
setLocalRepo("/Users/pbiecek/GitHub/graphGallery/")

iris %a%
 filter(Sepal.Length < 6) %a%
 lm(Petal.Length~Species, data=.) %a%
 summary() -> tmp

Object’s pedigree
We have extended the %>% operator from magrittr. The new operator saves all calls and results with
additional meta information that allow to recreate a path from which the object was created.

If this operator is used, then for any resulting object we can restore it’s pedigree.

library("dplyr")
setLocalRepo("/Users/pbiecek/GitHub/graphGallery/")

iris %a%
 filter(Sepal.Length < 6) %a%
 lm(Petal.Length~Species, data=.) %a%
 summary() -> tmp

Calls and partial results are stored as tags in archivist repository.

ahistory(tmp)

 iris [ff575c261c949d073b2895b05d1097c3]
-> filter(Sepal.Length < 6) [d3696e13d15223c7d0bbccb33cc20a11]
-> lm(Petal.Length ~ Species, data = .) [990861c7c27812ee959f10e5f76fe2c3]
-> summary() [050e41ec3bc40b3004bc6bdd356acae7]

ahistory(md5hash = "050e41ec3bc40b3004bc6bdd356acae7")

 iris [ff575c261c949d073b2895b05d1097c3]
-> filter(Sepal.Length < 6) [d3696e13d15223c7d0bbccb33cc20a11]
-> lm(Petal.Length ~ Species, data = .) [990861c7c27812ee959f10e5f76fe2c3]
-> summary() [050e41ec3bc40b3004bc6bdd356acae7]

Use Case 6:

We have an approved scoring model.

We want to make sure that exactly this model is used.

We need a way to check if we are using the right model.

Verification of identity of an object
In archivist, unique MD5 hashes identify objects. Hashes can be easily verified.

library("archivist")
model <- aread("pbiecek/graphGallery/2a6e492cb6982f230e48cf46023e2e4f")
digest::digest(model)

[1] "2a6e492cb6982f230e48cf46023e2e4f"

Verification of identity of an object
In archivist, unique MD5 hashes identify objects. Hashes can be easily verified.

library("archivist")
model <- aread("pbiecek/graphGallery/2a6e492cb6982f230e48cf46023e2e4f")

digest::digest(model)

[1] "2a6e492cb6982f230e48cf46023e2e4f"

summary(model)

Call:
lm(formula = Petal.Length ~ Sepal.Length + Species, data = iris)

Residuals:
 Min 1Q Median 3Q Max
-0.76390 -0.17875 0.00716 0.17461 0.79954

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.70234 0.23013 -7.397 1.01e-11 ***
Sepal.Length 0.63211 0.04527 13.962 < 2e-16 ***
Speciesversicolor 2.21014 0.07047 31.362 < 2e-16 ***
Speciesvirginica 3.09000 0.09123 33.870 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2826 on 146 degrees of freedom
Multiple R-squared: 0.9749, Adjusted R-squared: 0.9744
F-statistic: 1890 on 3 and 146 DF, p-value: < 2.2e-16

Use Case 7:

Can we use achivist to cache function results?

Cache
With archivist, you can use cache function to accumulate results from previous calls.

library(lubridate)
a temporary directory as a repo
cacheRepo <- tempdir()
createEmptyRepo(cacheRepo)
some toy function
fun <- function(n) {replicate(n, summary(lm(Sepal.Length~Species, iris))$r.squared)}

first execution
system.time(cache(cacheRepo, fun, 100))

 user system elapsed
 0.148 0.002 0.150

Cache
With archivist, you can use cache function to accumulate results from previous calls.

library(lubridate)
a temporary directory as a repo
cacheRepo <- tempdir()
createEmptyRepo(cacheRepo)
some toy function
fun <- function(n) {replicate(n, summary(lm(Sepal.Length~Species, iris))$r.squared)}

first execution
system.time(cache(cacheRepo, fun, 100))

 user system elapsed
 0.159 0.005 0.165

second execution is much faster
system.time(cache(cacheRepo, fun, 100))

 user system elapsed
 0.003 0.000 0.003

system.time(cache(cacheRepo, fun, 100, notOlderThan = now() - hours(1)))

 user system elapsed
 0.008 0.001 0.007

deleteRepo(cacheRepo)
rm(cacheRepo)

What other functions are available in archivist?

Where I can find more?
The latest version (1.5) is available on GitHub and CRAN.

More information, examples, use-cases and documentation about this package is available on
http://pbiecek.github.io/archivist/.

http://pbiecek.github.io/archivist/

