Reordering and selecting continuous variables

Katrin Grimm

Introduction

numerical

Selecting

variables

References

Reordering and selecting continuous variables

Katrin Grimm

Department of Computeroriented Statistics and Data Analysis
University of Augsburg

July 02, 2015

Introduction

Reordering and selecting continuous variables

Katrin Grimm

Introductio

variables

variables

001101001011

- Handling big, unknown data sets with a huge number of numerical variables is challenging
- Overviewing the correlation structure or finding more general two-dimensional anomalies can be quite difficult, but
 - two-dimensional structures are a good starting point for discovering interactions
 - interactions between two variables are visualizable and can be easily interpreted in scatterplots
 - ⇒ It's useful to be able to handle them
- The talk tries to help with two concepts:
 - Present a convenient graphic to overview the whole correlation structure
 - Select a scatterplot matrix to allow a first deeper insight in the real data

German election

Reordering

Katrin Grimm

- 299 cases (Germans electoral districts)
- 70 variables
 - vote shares of the parties in 2009 and 2005
 - demographic and economic information about the districts (e.g. unemployment rate, population density, birth rate)

68 numeric variables ⇒ 2278 possible two-dimensional plots

How can we overview the correlation structure visually?

Overview of all bivariate structures: A scatterplot matrix

Reordering and selecting continuous variables

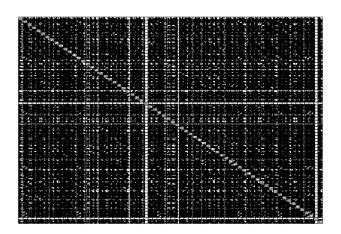
Katrin Grimm

Introduction

Reordering on numerical

Selecting

Conclusion



A corrgram¹ with all numerical variables in random order

Reordering and selecting continuous variables

Katrin Grimm

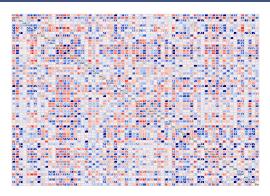
Introduction

Reordering on numerical

Selectin

Conclusion

References



- Visualizes the correlation matrix
- Direction of correlation is visualized by the color (blue for positive correlation, red for negative)
- Strength is visualized by the color intensity

More to see, but still unclear \Longrightarrow we need a new order

¹Michael Friendly (2002), implemented in the package corrgram

Reordering based on angles of principal components

Reordering and selecting continuous variables

Katrin Grimm

Introduction

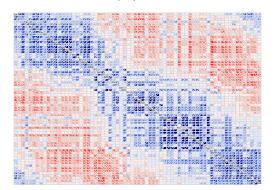
Reordering on numerical variables

variables

Conclusion

Based on eigenvectors v_1 , v_2 of the correlation matrix we consider for each variable the loading on the first two principal components $((v_{i1}, v_{i2})^T)$ The angles to the *x*-axis of these vectors can be used as a measure of similarity:

$$lpha_{i} = \left\{ egin{array}{ll} \operatorname{arctan}\left(rac{v_{i2}}{v_{i1}}
ight) & ext{if } v_{i1} > 0, \ \\ \operatorname{arctan}\left(rac{v_{i2}}{v_{i1}}
ight) + \pi & ext{else} \end{array}
ight.$$

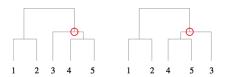


For a comparison: Optimal leaf ordering (OLO)²

Katrin Grimm

Approach:

- Hierarchical clustering (average linking) of the variables based on correlation matrix
- Reordering of the leaves to maximize the sum of the correlations of adjacent variables



from: Fast optimal leaf ordering for hierarchical clustering (Ziv Bar-Joseph et al)

²practical algorithm from Ziv Bar-Joseph et al (2001), implemented in the package **seriation**

A corrgram with variables in OLO based order

Reordering and selecting continuous variables

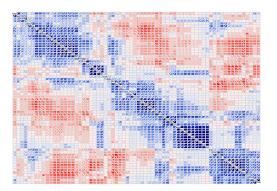
Katrin Grimm

Introduction

numerical variables

Selecting variables

Conclusion



- Seems even more ordered (over the PCA based ordering)
- Can also help to make a choice for the number of clusters (alternative to dendrograms)

Selecting *q* variables to show in a scatterplot matrix

Reordering and selecting continuous variables

Katrin Grimm

Introduction

Reordering of numerical variables

Selecting

Conclusions

Goal: Show *q* variables with maximal correlation in terms of:

$$\max g(i_1, i_2, ..., i_q) = \sum_{j=1}^{q} \sum_{k=j+1}^{q-1} Cor(X_{i_j}, X_{i_k})$$
where $i_1 < i_2 < ... < i_q$ and $i_i \in \{1, ..., p\} \forall i_i$ (1)

Easiest approach: Checking all possible combinations, which is computationally intensive

- There are more than 10 million possibilities to select 5 variables from the German election dataset and
- more than 500 million to select 8 variables.

How can the reordering help?

Approach to find q variables with maximal correlation

Reordering and selecting continuous variables

Katrin Grimm

Introductio

Reordering numerical

Selecting

Conclusion

References

Based on the new order of the variables $X_1, ..., X_p$ both goals are (approximatively) reachable with the following steps:

- 1 Choose $r \ge q$
- 2 For all $i \in \{1, ..., p\}$ calculate:

$$\begin{aligned} \textit{sumCor}_i &= \max g(i_1, i_2, ..., i_q) \\ &\quad \text{where } i_1 < i_2 < ... < i_q \\ &\quad \text{and } i_j \in \{i, (i+1) \bmod p, ..., (i+r-1) \bmod p\} \\ &\quad \forall i_j \text{ with } (p \bmod p) := p \end{aligned} \tag{2}$$

3 Find max sumCor_i

Illustration of the approach

Reordering and selecting continuous variables

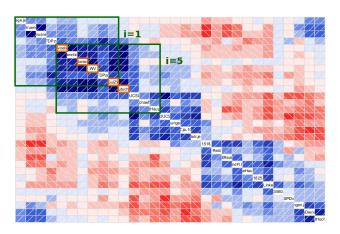
Katrin Grimm

Introduction

Reordering numerical

Selecting variables

Conclusion



Comparison

Reordering and selecting continuous variables

Katrin Grimm

Introductio

numerica variables

> Selecting variables

Conclusion

References

- Consider randomly chosen samples (30 variables) from dataset German election (500 times)
- Compare the results from the PCA based and from the optimal leaf reordering with the real optimum
- Vary r

Of interest is for different numbers of *r*:

- How many variables from real optimal matrix are found?
- Which rank has the approximative matrix under all possible in terms of the maximum correlation?

r = 5 (check only adjacent variables)

Reordering and selecting continuous variables

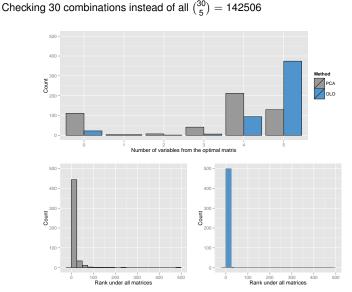
Katrin Grimm

Introduction

Reordering of

Selectin

Conclusion



r = 10

Reordering and selecting continuous variables

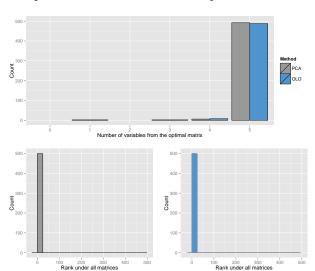
Katrin Grimm

Introduction

Reordering of

Selecting

Conclusion



r = 15

Reordering and selecting continuous variables

Katrin Grimm

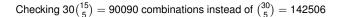
Introduction

Reordering of

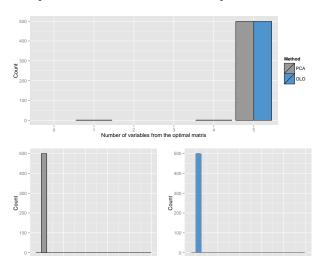
Selecting

Conclusion

References



Rank under all matrices



Rank under all matrices

What's the result with the whole dataset?

Reordering and selecting continuous variables

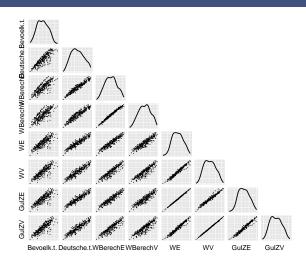
Katrin Grimm

Introduction

Reordering on numerical

Selectin

Conclusion



- r = 10: PCA based reordering finds 7 from the 8 variables of the optimal matrix, OLO already delivers the optimal matrix
- r = 15: Both methods find the optimal matrix

Possible extensions to select scatterplot matrices

Reordering and selecting continuous variables

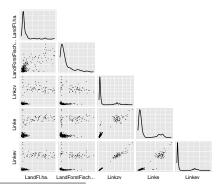
Katrin Grimm

Introduction

numerical variables

variables

- 1 Ignore really high correlations (in a second step)
- 2 Substitute the correlation with a more general dependency measure
- 3 Based on the *scagnostics* idea, that scatterplots are describable through a few measures, a more complex approach is conceivable:
 - Define a relevance measure based on scagnostics measures³
 - Use the same approach to find the matrix with "highest relevance"



³Some of the measures from package **scagnostics** are used for the example

Conclusions

Reordering and selecting continuous variables

Katrin Grimm

Introduction

Reordering on numerical

Selectin variable

Conclusions

- Reordering in connection with corrgrams satisfies the goal to offer a good first overview of the correlation structure
- The idea of studying subgroups can bring good insights in the data
- Especially the scagnostics approach can offer a general and interesting extension of that idea

References

Reordering and selecting continuous variables

Katrin Grimm

Introductio

Reordering of numerical

Selecting

Conclusions

References

M. Friendly and E. Kwan (2003). Effect ordering for data displays. In: Comput. Stat. Data Anal. 43(4), 509–539.

Z. Bar-Joseph, D. K. Gifford, and T. S. Jaakkola. (2001). Fast Optimal Leaf Ordering for Hierarchical Clustering. In: Bioinformatics, Vol. 17 Suppl. 1, 22–29.

J. W. Tukey and P. A. Tukey (1988). Computer Graphics and Exploratory Data Analysis: An Introduction. In: The Collected Works of John W. Tukey: Graphics 1965-1985.

L. Wilkinson, A. Anand and R. Grossman (2005). Graph-Theoretic Scagnistics. In: Proceedings of the 2005 IEEE Symposium on Information Visualization, 157–164