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Motivation

• Højsgaard and Lauritzen (2008) define Gaussian
graphical models with symmetry

• maximum likelihood estimation (MLE) is possible but
computationally expensive

• search space is huge, so model selection is difficult, in
particular because of the above

• Is there another way?

• Yes, use the SME (score matching estimator)!
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Scoring rules

Game between Forecaster and Nature:

Forecaster quotes probability distribution Q for a random
quantity X . Then Nature reveals X = x .

How well did Forecaster do? A score is calculated S(x ,Q)
representing a loss to Forecaster.

The function S(x ,Q) is a scoring rule (Good, 1952;
McCarthy, 1956).
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A common example of such a scoring rule is the logarithmic
score

S(x ,Q) = − log q(x)

where q(x) is the density of Q w.r.t. a fixed measure on X .

We can extend the definition of a scoring rule to S(P,Q) for
any probability distribution P as

S(P,Q) = EX∼P{S(X ,Q)} =

∫
S(x ,Q)P(dx)

and further, using the right-hand expression, to S(µ,Q) for
any positive and finite measure. Then S is linear in the first
argument.

Steffen Lauritzen University of Copenhagen — Linear estimating equations — useR!, Aalborg, July 2015

Slide 5/31



un i v er s i ty of copenhagen department of mathemat i ca l s c i ence s

Proper scoring rules

A scoring rule is proper if it encourages honesty, i.e. if the
loss is minimized for Q = P, i.e. if

S(P,P) = inf
Q

S(P,Q).

It is strictly proper if the minimum is unique.

The logarithmic score is strictly proper.
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Other examples of strictly proper scoring rules include for X
being finite the Brier score

S(x ,Q) = ||q||22 − 2q(x),

where q is the pmf of Q and ||q||22 =
∑

x q(x)2, and the
spherical score

S(x ,Q) = −q(x)/||q||2.

Also, for X = R, the Bregman scores are strictly proper

S(x ,Q) = φ′{q(x)}+

∫ [
φ{q(y)} − q(y)φ′{q(y)}

]
µ(dy),

where φ is any strictly concave real function.
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Every strictly proper scoring rule induces an entropy function

H(P,P) = S(P,P)

and a non-negative divergence (Dawid, 1998; Grünwald and
Dawid, 2004)

D(P,Q) = S(P,Q)− S(P,P) = S(P,Q)− H(P) ≥ 0.

For the logarithmic score we get the Shannon entropy

H(P) = EX∼P{− log p(X )}

and the Kullback–Leibler divergence

D(P,Q)) = EX∼P{− log q(X )+log p(X )} = EX∼P{log p(X )/q(X )}.
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Suppose X ⊆ Rp and the density q = dQ/dx of Q satisfies:

EX∼P‖∇ log q(X )‖2
p <∞ for all P,Q ∈ P;

as well as q(x)→ 0 and ‖∇q(x)‖p → 0 as x approaches the
boundary of X .

Then Hyvärinen (2005) showed that the divergence function

D2(P,Q) = EX∼P ‖∇ log q(x)−∇ log p(x)‖2
p

where p is the density of P, is induced by the scoring rule

S2(x ,Q) =
1

2
‖∇ log q(x)‖2

p + ∆ log q(x).

which is strictly proper (Dawid and Lauritzen, 2005).
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Let P = {Qθ, θ ∈ Θ} and X 1 = x1, . . . ,X = xn be a sample
in X with empirical distribution P̂.

The score estimator of θ is determined as the minimizer

θ̌ = arg min
θ∈Θ

n∑
i=1

S(x i ,Qθ) = arg min
θ∈Θ

EX∼P̂{S(X ,Qθ)}.

Dawid and Lauritzen (2005) show that this minimization
yields an unbiased estimating equation

n∑
i=1

S ′(x i , θ) = 0,

where S ′(x , θ) is the vector of derivatives of S(x ,Qθ) w.r.t. θ.
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Solutions to the score equations are M-estimators (Huber,
1964, 1967) — generalized means (Brøns et al.) — and are
typically consistent, although rarely efficient.

If S(x ,Q) = − log q(x) is the logarithmic score, the equation
is the likelihood equation and the score estimator is the
maximum likelihood estimator.
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The score matching estimator

The score matching estimator (Hyvärinen, 2005) is the
estimator corresponding to the scoring rule

S2(x ,Q) =
1

2
‖∇ log q(x)‖2

p + ∆ log q(x).

Note that S2(x ,Q) can be calculated if we only know q up to
an unknown proportionality factor.

Hence, if q(x | θ) = c(θ)h(x , θ), we do not need to have a
simple expression for the normalizing constant c(θ) as it
disappears by differentiation.
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Exponential families

Consider an exponential family P with densities q(x | θ):

log q(x | θ) = 〈θ, t(x)〉d − a(θ) + b(x), θ ∈ Θ.

Here t(x) ∈ L is the canonical sufficient statistic, L is a
d-dimensional vector space, 〈·, ·〉d an inner product on L, and
Θ ⊆ L is the (convex) canonical parameter space. We get

∇ log q(x | θ) = D(x)θ +∇b(x)

where D(x) = ∇t(x) is determined by D(x)η = ∇〈η, t(x)〉d
for all η ∈ L and further

∆ log q(x | θ) = 〈θ,∆t(x)〉d + ∆b(x)

with ∆t(x) given by 〈η,∆t(x)〉d = ∆ 〈η, t(x)〉d .

Steffen Lauritzen University of Copenhagen — Linear estimating equations — useR!, Aalborg, July 2015

Slide 13/31



un i v er s i ty of copenhagen department of mathemat i ca l s c i ence s

The score matching estimator based on X 1 = x1, . . . ,X = xn

is determined by the linear(!) estimating equation for θ

n∑
i=1

D(x i )∗
{
D(x i )θ +∇b(x i )

}
+ ∆t(x i ) = 0,

where D(x i )∗ is the transpose of D(x i ).

If
∑n

i=1 D(x i )∗D(x i ) is invertible, the score estimation
equation has the unique solution

θ̌n = −

{
n∑

i=1

D(x i )∗D(x i )

}−1 n∑
i=1

{
D(x i )∗∇b(x i ) + ∆t(x i )

}
.

Beware! We may have θ̌n 6∈ Θ. Ignore this problem at the
moment.
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Gaussian linear concentration models

Gaussian models with linear structure in the concentration
matrix (Anderson, 1970), are special instances.

Let L be a d-dimensional subspace of Sp, the symmetric
p × p matrices with trace inner product 〈A,B〉d = tr(AB)
and associated Frobenius norm ‖A‖2

d = tr(A2). Then

log p(x |K ) = {log det(K )− p log(2π)− 〈x ,Kx〉p}/2

= −
〈
K , xx>

〉
d
/2 + {log det(K )− p log(2π)}/2

=
〈
K ,−ΠL(xx>)/2

〉
d

+ {log det(K )− p log(2π)}/2

are exponential families as above with X = Rp, θ = K ,
b(x) = 0, and t(x) = −ΠL(xx>)/2, where ΠL is the
orthogonal projection onto L in Sp.
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We may w.l.o.g. assume Ip ∈ Θ and then get

D(x)K = −Kx , D(x)∗y = −ΠL(xy>+yx>)/2, ∆t(x) = −Ip

where Ip is the p × p identity matrix.

If we let W = n−1
∑n

i=1 x
ix i
>

, the score matching equation
specializes to

ΠL(K ◦W ) = Ip

where A ◦ B = (AB> + BA>)/2 is the Jordan product
(Albert, 1946) of the symmetric matrices A and B.
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Suppose that L is closed under the Jordan product or,
equivalently, Θ = L ∩ Sp+ is closed under inversion (Jensen,
1988). Includes all models determined by group invariance
(Andersson, 1975).

For such models the MLE and the score matching estimator
(SME) coincide. More precisely:

If the subspace L is a Jordan subalgebra, the score matching
estimator is equal to the maximum likelihood estimator and

K̂ = Ǩ = {ΠL(W )}−1,

provided ΠL(W ) is invertible.
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Existence issues

Observing x = (x1, . . . , xn), the score matching equation has
a unique solution iff the quadratic form

D2(K ) =
n∑

i=1

‖Kx i‖2

is positive definite on L. If e1, . . . , ed is an orthogonal basis
for L, the matrix for this quadratic form is M(x) = {muv (x)}

muv (x) =
n∑

i=1

〈
eux i , evx i

〉
p

= n tr(euWev )

and hence D2 is positive definite if and only if detM(x) > 0.
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This determinant is a polynomial in x ; hence either
detM(x) = 0 for all x or detM(x) > 0 almost everywhere
(Okamoto, 1973).

Contrast to the MLE, which can exist with probability strictly
between zero and one (Buhl, 1993; Uhler, 2012; Gross and
Sullivant, 2014).

If the SME exists, then the MLE also exists, i.e. if
K → ΠL(K ◦W ) has trivial kernel the MLE exists, but not
conversely (Forbes and Lauritzen, 2015).

Even when there is a unique solution Ǩ , Ǩ may not be
positive semidefinite.
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Say L is n-estimable if there is an x = (x1, . . . , xn) ∈ Rp×n

such that detM(x) > 0.

For n ≥ p, W is positive definite with probability one and
hence M(x) is positive definite and any L is n-estimable.

Assume n < p. Let r = p − n and Tk = k(k + 1)/2.

If dim L > Tp − Tr , L is not n-estimable.
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The converse is false:

L =



a c 0 f
c b −f 0
0 −f a c
f 0 c b

 : a, b, c, f ∈ R

 ,

is not 1-estimable although we have p = 4 and d = 4 and
thus

Tp − Tr = T4 − T3 = 4 = d .

This is an example of a Jordan subalgebra (Jensen, 1988) and
— as Jensen — we conclude that also the MLE fails to exist.
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Gaussian graphical models with symmetries (Højsgaard and
Lauritzen, 2008) are linear concentration models generated
by a coloured graph.

Undirected graph G = (V ,E ).

Colouring vertices of G with different colours induces
partitioning of V into vertex colour classes.

Colouring edges E partitions E into disjoint edge colour
classes

V = V1 ∪ · · · ∪ VT , E = E1 ∪ · · · ∪ ES .

V = {V1, . . . ,VT} is a vertex colouring,

E = {E1, . . . ,ES} is an edge colouring,

G = (V, E) is a coloured graph.
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RCON model

1 Diagonal elements K corresponding to vertices in the
same vertex colour class must be identical.

2 Off–diagonal entries of K corresponding to edges in the
same edge colour class must be identical.

The set of positive definite matrices which satisfy these
restrictions is denoted S+(V, E).
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u

u u

uY4

Y1

Y3

Y2

Corresponding RCON model will have concentration matrix

K =


k11 k12 0 k14

k21 k22 k23 0
0 k32 k33 k34

k41 0 k43 k44
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Determines linear concentration model.

Let eu for u ∈ V denote the |V | × |V | diagonal matrix with
euαα = 1 if α ∈ u and 0 otherwise. Similarly, for each edge
colour class u ∈ E we let eu be the |V | × |V | symmetric
matrix with euαβ = 1 if {α, β} ∈ u and 0 otherwise. Then
{eu, u ∈ V ∪ E} form an orthogonal basis for L.

Likelihood equations (Højsgaard and Lauritzen, 2008)
become

tr(euW ) = tr(euK−1), u ∈ V ∪ E , (1)

which are non-linear in K .
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The score matching equations for RCON models are

tr(euWK ) = tr(eu), u ∈ V ∪ E , (2)

which should be compared to (1); they are analogous to the
Yule–Walker equations for estimating parameters of
autoregressive processes in time series.

Using previous result we find that the SME does not exist if
|V|+ |E| > n(2|V | − n + 1)/2.
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Modify Jordan counterexample to coloured graphical model:

L =



a c 0 f
c b f 0
0 f a c
f 0 c b

 : a, b, c , f ∈ R

 ,

s
s s

sY4

Y1

Y3

Y2

This is 1-estimable as detM(x) = 4x1x2x3x4.

This is not a Jordan subalgebra but we conclude that also
the MLE exists.
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Results of Gross and Sullivant (2014) imply partial results for
uncoloured graphs:

The r -core of a graph G is obtained by successively deleting
vertices of degree < r .

If G has empty r -core, it is n-estimable for n ≥ r .

For planar graphs, four observations suffice:

If G is planar, it is n-estimable for all n ≥ 4.
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Minimum score for the SME is very easy to calculate

n∑
i=1

S2(yi ,QǨ ) = tr Ǩ 2W /2− n tr(Ǩ ) = −n tr(Ǩ )/2.

This makes sense even if Ǩ is not positive definite.

So identify graph by minimizing a penalised version, say:

S̃(G) = (|V |+ |E |)√p log log(np)/(2n)− tr(ǨG).

This is extremely fast. For example, using this on an s × s
lattice so p = s2 it took for s = 100, i.e. p = 10000 and
n = 100000 10 seconds to identify the lattice structure
(correctly). Note concentration matrix is 10000× 10000, so
is rather big...

Could not load the concentration matrix into R to compare
with, say, graphical lasso.
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: p = 16, n = 1× p : p = 64, n = 1× p : p = 256, n = 1× p

: p = 16, n = 5× p : p = 64, n = 5× p : p = 256, n = 5× p

: p = 16, n = 10× p : p = 64, n = 10× p : p = 256, n = 10× p
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Issues to be considered

• Find general condition for existence of the SME
(detM(x) > 0);

• When is the SME positive definite?

• When is the SME positive definite with high probability?

• Define fast model screening procedure for structure
identification.

• Are there other interesting exponential families where
the SME could be used with advantage?

• Make all this available in R, please...
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