Computations On Distributed Data Without
Aggregation

Balasubramanian Narasimhan

Department of Health Research and Policy
Department of Statistics
Stanford University

June 30, 2015

Setting

In many situations, data of interest is distributed in several places.

> Medical databases containing clinical data
» Genomic data generated at institutions
> Clinical trials data
Analyzing aggregated data promises many advantages.

» Reliable and stable modeling of outcomes

> Larger N
> Precision of estimates
» Power for detecting differences

» Richer feature sets for use in models

» More chance for finding “patients like me”

The Problem

There are high (and growing) barriers to aggregation of medical
data, particularly between centers/researchers.

v

Lack of standardization of ontologies

v

Privacy concerns

v

Reluctance to cede control (once flown...)

> Proprietary attitude towards institution’s data

There have been several large efforts in these areas often very
costly and yielding mixed results.

The aggregation step may sometimes even be undesirable, due to
the sheer scale of the data.

Distributed data will do

It has been long known that data aggregation is unnecessary;
aggregating computational summaries suffices. Thus,

» Data can stay at site;

» A master process can aggregate the summaries from sites and

perform statistical calculations, e.g., an MLE calculation

Many model fitting computations can be so implemented.

GLM, MLE Likelihood breaks up into sums of likelihood

computed on local data at sites.

SVD lterative algorithms are available for computing
singular values using quantities computed on local
data at sites.

Indeed, sometimes distribution of the calculation among sites is
necessary to share a heavy computational burden.
We present an R-centered approach, using opencpu and shiny.

Collaborators and Acknowledgements

Marina Bendersky ~Samuel Gross Philip Lavori Daniel Rubin

Research supported by Stanford Cancer Institute, NIH, NSF (Nos. P30 CA124435-01, Ul1 RR025744, LM-07033)

Previous Work

The idea that computations can be distributed is not new.

» Jiang et. al.(Bioinformatics 2013) describe the WebGLORE:
Web-based Grid LOgistic REgression service

» Wolfson, et. al.(IJE, 2010) describe fitting generalized linear
models (GLMs) by aggregating anonymous summary-statistics
from harmonized individual-level databases (DataSHIELD).

OBiBa suite includes advanced software components
enabling data harmonization and federation for
study networks that aim to harmonize and share
securely data among their members...

Source: http: //www. obiba. org

This is project is not unlike ours, using R, and implements the
iteratively weighted least squares (IRLS) algorithm for fitting
a full GLMs using only summary statistics computed from the
distributed data.

http://www.obiba.org

Assumptions

» Star topology, master in center;

» Transmitting summaries is ok; in fact, master makes an
unlimited number of calls on worker sites;

> Some degree of trust between sites via agreements between
ClOs etc.

Singular Value Decomposition

The SVD of X,xp, is U, V, D such that

>

X=UDV", UTU=1, V'V =1, and D is diagonal.

Decomposes the variance of X into what are called principal
components.

v1, the first column of V, the first principal component of X
maximizes of var(Xv).

up indicates how much of factor v is present in each
observation.

d?/ > dj2 is the proportion of the variance of X that can be
explained by v;.

The first k vectors can used to get a k approximation to X.

Efficient Implementations in LAPACK, which much software builds
upon.

There is a well-known power method for computing a singular
vector corresponding to the largest eigenvalue.

Data: X € R"*P

Result: u e R", veRP, and d >0

1.
u<—(\[\fa---a%),
repeat

v X
u<+ Xv;
u < uf|lull;

until convergence;

Note that the operations involve inner products and sums and
therefore distribute over sites.

Singular vectors can be found successively by removing the effect
of the top singular vector and then finding the rank-1
approximation again.

Privacy-preserving rank-k SVD

Data: each site has private data X; € RMXP

Result: V € RP*K anddy > ...dx >0
V < 0, d < 0 foreach site j do

ull = 0;

transmit nj to master;

end
for i < 1to k do

foreach site j do ull (1,1,...,1) of length nj;

llull « /5

transmit ||u||, V, and D to sites;

repeat
foreach site j do
bl b u);
caleulate VU1 « (xU1 — yllpy)T ,Ul;
transmit vU] to master;
end

bl .
v v v/vii
transmit v to sites;
foreach site j do

calculate ull X[’]v;

transmit HUU]H to master;

end

lull < 5 11ab);
transmit ||ul| to sites;
di |lull;

until convergence;
V 4 cbind(V, v);
foreach site j do ull cbind(UU], u[/]);

end

Site Stratified Cox Model

The Cox PH model assumes a hazard function of the form

>\n><1(t) =)\O(t) eXP(XnXpoxl)a

Model fitting and inference is accomplished by maximizing a partial
likelihood function (see Therneau and Grambsch) of the form:

(BIX) = Z /[OXi(1)8 ~ tog 3 Yi(005(6.)) | ami o).

In multicenter studies, the stratified Cox model is often used where
each site is a stratum. This allows for different a baseline hazard
for each site, yet a single 3 is fit.

It turns out again that the overall log-likelihood is a sum over the
strata. Same for score, information matrix etc. So once again the
computation can be distributed.

Maximization via Newton-Raphson

K sites, Ik(B), Sk(8B), Ik(B) are site-specific likelihood, score and
information matrix.

0. Set i =0, Bp =0, a tolerance € and a maximum
number of iterations B.

1. Transmit 3; to each site

2. Each site k sends back /k(8;), Sk(B;) and 1(3;)

3. Compute /() = X4y 1(8), S(81) = iy Sk(By).
1(B1) = ke (B1),

4. Set

Biy1 = Bi +171(B1)S(Bi)
5. Stop if converged or iteration count exceeded. Else

increment / and repeat step 1.

For the Cox Model, the convergence is very fast with a slight
tweak such as step-halving.

Schematic

Site 1
Data: X;
Summaries:
h(B) =1(Xy,B),
51(B) =11 (X1, B),
L(B) = =5;(X, B)

Site 2
Data: X5
Summaries:
h(B) = 1(X, B),
53(B) = 15(Xa, B).
L(B) = —55(X2, B)

Master Site
B=0
Iterate to convergence:
S=YSi(B),1=LLB)

Bi1=Bi+17'S

Site 3
Data: X3
Summaries:
13(B) = 1(X3,B),
S3(B) = I5(X3, B),
I(B) = =85(X3, B)

Summaries:
l4(B) = 1(Xy, B),
S4(B) = 14(Xa, B).

L4(B) = —Sy(X4, B)

Components of a Distributed Approach

» Readily available computing power (a unix server box) on
local data.

» Tools to propose, define and refine computation tasks (R
package shiny, R package opencpu)

> An extensible, open source environment to implement such
tools and algorithms in order than Joe and Pam can be peers
(R for us, our package distcomp)

» Secure means of exposing computation to site (SSL)
There are several social aspects of the collaboration need to be

engineered.
We describe our progress so far with our R package distcomp.

Implementation Details

» Definiation of a computation are stored in an object, tagged
by unique names and each instance is given a unique identifier

» For each computation there is a master object (CoxMaster,
SVDMaster, etc.) and a corresponding worker object
(CoxSlave, SVDSlave, etc.) implemented using R6 classes

» Worker objects can be stateful. So for example, they may
change states during iterations (serialized to workspace)

> Function calls are via opencpu to distcomp package
(httr::POST calls) invoking methods on instantiated objects

» Data is JSON serialized in current implementation

Executing a Distributed Computation

The main steps are the following.

Requirements: R, distcomp package

N
. . Computation Type ——
1. Define the computation: copumemic | s | . oomionic
Parameters (defn.rds)
Exemplar Data —
J
-
2 S k OpenCPU URL —
. et Up Worker processes' Definition file (aefn. cas)—> Shiny App — Site ready
TR e —
/
e Y
3. Create master script: ostntentie (F0S) —= | suoyn |,
Site URLS —_—
sotupastory
A /

The resulting R script can then be executed.

Example: SVD Computation

Simulated dataset on three sites, 20 x 5 matrix at each site.
Aggregated SVD is:

> set.seed(12345)
> x <- matrix(rnorm(100), nrow = 20))

> svd(x)$d
[1] 9.707537 8.199827 7.982888 7.257286 6.235182
> svd(x)$v
[,1] [,2] [,31 [,4] [,5]

[1,] -0.17946375 0.08268613 -0.01644895 -0.98010572 -0.00883063
[2,] -0.78963831 0.34694371 0.34328503 0.16509457 0.33316749
[3,] 0.21305901 0.91839439 -0.25083926 0.04461477 -0.21505068
[4,] 0.54504905 0.16843629 0.53318714 -0.10009622 0.61663844
[5,]1 -0.04232602 -0.03120945 -0.73121540 0.01126215 0.68002329

The Distributed SVD Fit

The code produced in the master setup is:

library(distcomp)
defn <-
structure(list(id = "c83c9bd59551df3a", compType = "RankKSVD",
projectName = "SVDTest", projectDesc = "SVD Test Example",
rank = 2L, ncol = 5L), .Names = c("id", "compType", "projectName",
"projectDesc", "rank", "ncol"), row.names = c(NA, -1L), class = "data.frame")
sites <-
list(structure(list(name = "Sitel", url = "http://127.0.0.1:5999/ocpu"), .Names = c("name",
"url")), structure(list(name = "Site2", url = "http://127.0.0.1:5999/ocpu"), .Names = c("name",
"url")), structure(list(name = "Site3", url = "http://127.0.0.1:5999/ocpu"), .Names = c("name",
"url")))
master <- makeMaster(defn)
for (site in sites) {
master$addSite(name = site$name, url = site$url)

¥
result <- master$run()
print (master$summary ())

The SVD Output

If you run that program, after a while it spits out the following:

$v

[,1] [,2]
[1,] 0.17947030 0.08275684
[2,] 0.78969198 0.34634459
[3,] -0.21294972 0.91875219
[4,] -0.54501407 0.16784298
[5,] 0.04229739 -0.03032954

$d
[1] 9.707451 8.200043

If you actually ask for k =5, it gives:

> result$d
[1] 9.707451 8.200043 7.982650 7.257355 6.235351

> result$v
[,1] [,2] [,31 [,4] [,5]
0.17947030 0.08275684 0.0165604 0.98008722 -0.008933396
0.78969198 0.34634459 -0.3437723 -0.16504730 0.333181988
-0.21294972 0.91875219 0.2496210 -0.04479619 -0.214978886
-0.54501407 0.16784298 -0.5334277 0.10025749 0.616612820
0.04229739 -0.03032954 0.7312254 -0.01140918 0.680060781

Example: Cox Model

Hosmer and Lemeshow data on time until return to drug use for
patients enrolled in two different residential treatment programs.
Aggregated fit is:

> uis <- readRDS("uis.RDS")

> cox0Orig <- coxph(formula = Surv(time, censor) ~ age + becktota +
+ ndrugfpl + ndrugfp2 + ivhx3 +

+ race + treat + strata(site), data = uis)

> summary (coxOrig)

Call:

coxph(formula = Surv(time, censor) ~ age + becktota + ndrugfpl +
ndrugfp2 + ivhx3 + race + treat + strata(site), data = uis)

n= 575, number of events= 464
(53 observations deleted due to missingness)

coef exp(coef) se(coef) Pr(>lzl)

N

age -0.028076 0.972315 0.008131 -3.453 0.000554 *x*x*
becktota 0.009146 1.009187 0.004991 1.832 0.066914
ndrugfpl -0.521973 0.593349 0.124424 -4.195 2.73e-05 **x*
ndrugfp2 -0.194178 0.823512 0.048252 -4.024 5.72e-05 **x*
ivhx3TRUE 0.263634 1.301652 0.108243 2.436 0.014868 *
race -0.240021 0.786611 0.115632 -2.076 0.037920 *
treat -0.212616 0.808466 0.093747 -2.268 0.023331 *

Signif. codes: 0 ’#%x’ 0.001 ’*x’ 0.01 ’%> 0.05 ’.”> 0.1 > > 1

The Distributed Cox Fit

Let's do it!

Data in Databases

The examples shown here use CSV files for demonstration. It is
straightforward to use data in databases, Redcap for example.

» We use the redcap-api package to get data in R

> The shiny apps ask for Redcap secret token instead
This is currently being tested. Note that the Redcap server only
need to talk to the opencpu server and not the outside world.

This approach can be replicated for any database, where instead of
uploading a CSV file, one would specify database parameters.

Ongoing Work

v

User-friendly tools for collaboration

v

Improving error messages, better fault-tolerance

v

Designing dashboards for audits

Efficient serialization: JSON versus Protocol Buffers

v

v

Implementing more models

References

» N. et.al. Software for Distributed Computation on Medical
Databases: A Demonstration Project. Arxiv paper:
http://arxiv.org/abs/1412.6890

» Software on on CRAN and on Github:
http://github.com/hrpcisd

http://arxiv.org/abs/1412.6890
http://github.com/hrpcisd

